Class: Matrix
- Extended by:
- ConversionHelper
- Includes:
- Enumerable, ExceptionForMatrix, CoercionHelper
- Defined in:
- opal/stdlib/matrix.rb,
opal/stdlib/matrix/lup_decomposition.rb,
opal/stdlib/matrix/eigenvalue_decomposition.rb
Overview
frozen_string_literal: false
Defined Under Namespace
Modules: CoercionHelper, ConversionHelper Classes: EigenvalueDecomposition, LUPDecomposition, Scalar
Constant Summary
- SELECTORS =
{all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze
Constants included from Exception2MessageMapper
Instance Attribute Summary collapse
-
#column_count ⇒ Object
(also: #column_size)
readonly
Returns the number of columns.
Class Method Summary collapse
-
.[](*rows) ⇒ Object
Creates a matrix where each argument is a row.
-
.build(row_count, column_count = row_count) ⇒ Object
Creates a matrix of size +row_count+ x +column_count+.
-
.column_vector(column) ⇒ Object
Creates a single-column matrix where the values of that column are as given in +column+.
-
.columns(columns) ⇒ Object
Creates a matrix using +columns+ as an array of column vectors.
-
.combine(*matrices) ⇒ Object
Create a matrix by combining matrices entrywise, using the given block.
-
.diagonal(*values) ⇒ Object
Creates a matrix where the diagonal elements are composed of +values+.
-
.empty(row_count = 0, column_count = 0) ⇒ Object
Creates a empty matrix of +row_count+ x +column_count+.
-
.hstack(x, *matrices) ⇒ Object
Create a matrix by stacking matrices horizontally.
-
.identity(n) ⇒ Object
(also: unit, I)
Creates an +n+ by +n+ identity matrix.
-
.row_vector(row) ⇒ Object
Creates a single-row matrix where the values of that row are as given in +row+.
-
.rows(rows, copy = true) ⇒ Object
Creates a matrix where +rows+ is an array of arrays, each of which is a row of the matrix.
-
.scalar(n, value) ⇒ Object
Creates an +n+ by +n+ diagonal matrix where each diagonal element is +value+.
-
.vstack(x, *matrices) ⇒ Object
Create a matrix by stacking matrices vertically.
-
.zero(row_count, column_count = row_count) ⇒ Object
Creates a zero matrix.
Instance Method Summary collapse
-
#*(m) ⇒ Object
Matrix multiplication.
-
#**(other) ⇒ Object
Matrix exponentiation.
-
#+(m) ⇒ Object
Matrix addition.
- #+@ ⇒ Object
-
#-(m) ⇒ Object
Matrix subtraction.
- #-@ ⇒ Object
-
#/(other) ⇒ Object
Matrix division (multiplication by the inverse).
-
#==(other) ⇒ Object
Returns +true+ if and only if the two matrices contain equal elements.
-
#[](i, j) ⇒ Object
(also: #element, #component)
Returns element (+i+,+j+) of the matrix.
- #[]=(i, j, v) ⇒ Object (also: #set_element, #set_component)
-
#adjugate ⇒ Object
Returns the adjugate of the matrix.
-
#antisymmetric? ⇒ Boolean
Returns +true+ if this is an antisymmetric matrix.
-
#clone ⇒ Object
Returns a clone of the matrix, so that the contents of each do not reference identical objects.
-
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion.
-
#cofactor(row, column) ⇒ Object
Returns the (row, column) cofactor which is obtained by multiplying the first minor by (-1)**(row + column).
-
#collect(&block) ⇒ Object
(also: #map)
Returns a matrix that is the result of iteration of the given block over all elements of the matrix.
-
#column(j) ⇒ Object
Returns column vector number +j+ of the matrix as a Vector (starting at 0 like an array).
-
#column_vectors ⇒ Object
Returns an array of the column vectors of the matrix.
- #combine(*matrices, &block) ⇒ Object
-
#conjugate ⇒ Object
(also: #conj)
Returns the conjugate of the matrix.
-
#determinant ⇒ Object
(also: #det)
Returns the determinant of the matrix.
-
#determinant_e ⇒ Object
(also: #det_e)
deprecated; use Matrix#determinant.
-
#diagonal? ⇒ Boolean
Returns +true+ if this is a diagonal matrix.
-
#each(which = :all) ⇒ Object
Yields all elements of the matrix, starting with those of the first row, or returns an Enumerator if no block given.
-
#each_with_index(which = :all) ⇒ Object
Same as #each, but the row index and column index in addition to the element.
-
#eigensystem ⇒ Object
(also: #eigen)
Returns the Eigensystem of the matrix; see +EigenvalueDecomposition+.
-
#elements_to_f ⇒ Object
Deprecated.
-
#elements_to_i ⇒ Object
Deprecated.
-
#elements_to_r ⇒ Object
Deprecated.
-
#empty? ⇒ Boolean
Returns +true+ if this is an empty matrix, i.e.
- #eql?(other) ⇒ Boolean
-
#first_minor(row, column) ⇒ Object
Returns the submatrix obtained by deleting the specified row and column.
-
#hadamard_product(m) ⇒ Object
(also: #entrywise_product)
Hadamard product Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]]) => 1 4 9 8.
-
#hash ⇒ Object
Returns a hash-code for the matrix.
-
#hermitian? ⇒ Boolean
Returns +true+ if this is an hermitian matrix.
-
#hstack(*matrices) ⇒ Object
Returns a new matrix resulting by stacking horizontally the receiver with the given matrices.
-
#imaginary ⇒ Object
(also: #imag)
Returns the imaginary part of the matrix.
-
#index(*args) ⇒ Object
(also: #find_index)
:call-seq: index(value, selector = :all) -> [row, column] index(selector = :all){ block } -> [row, column] index(selector = :all) -> an_enumerator.
-
#initialize(rows, column_count = rows[0].size) ⇒ Matrix
constructor
Matrix.new is private; use Matrix.rows, columns, [], etc...
-
#inspect ⇒ Object
Overrides Object#inspect.
-
#inverse ⇒ Object
(also: #inv)
Returns the inverse of the matrix.
-
#laplace_expansion(row: nil, column: nil) ⇒ Object
(also: #cofactor_expansion)
Returns the Laplace expansion along given row or column.
-
#lower_triangular? ⇒ Boolean
Returns +true+ if this is a lower triangular matrix.
-
#lup ⇒ Object
(also: #lup_decomposition)
Returns the LUP decomposition of the matrix; see +LUPDecomposition+.
-
#minor(*param) ⇒ Object
Returns a section of the matrix.
-
#normal? ⇒ Boolean
Returns +true+ if this is a normal matrix.
-
#orthogonal? ⇒ Boolean
Returns +true+ if this is an orthogonal matrix Raises an error if matrix is not square.
-
#permutation? ⇒ Boolean
Returns +true+ if this is a permutation matrix Raises an error if matrix is not square.
-
#rank ⇒ Object
Returns the rank of the matrix.
-
#rank_e ⇒ Object
deprecated; use Matrix#rank.
-
#real ⇒ Object
Returns the real part of the matrix.
-
#real? ⇒ Boolean
Returns +true+ if all entries of the matrix are real.
-
#rect ⇒ Object
(also: #rectangular)
Returns an array containing matrices corresponding to the real and imaginary parts of the matrix.
-
#regular? ⇒ Boolean
Returns +true+ if this is a regular (i.e. non-singular) matrix.
-
#round(ndigits = 0) ⇒ Object
Returns a matrix with entries rounded to the given precision (see Float#round).
-
#row(i, &block) ⇒ Object
Returns row vector number +i+ of the matrix as a Vector (starting at 0 like an array).
-
#row_count ⇒ Object
(also: #row_size)
Returns the number of rows.
-
#row_vectors ⇒ Object
Returns an array of the row vectors of the matrix.
-
#singular? ⇒ Boolean
Returns +true+ if this is a singular matrix.
-
#square? ⇒ Boolean
Returns +true+ if this is a square matrix.
-
#symmetric? ⇒ Boolean
Returns +true+ if this is a symmetric matrix.
-
#to_a ⇒ Object
Returns an array of arrays that describe the rows of the matrix.
-
#to_matrix ⇒ Object
Explicit conversion to a Matrix.
-
#to_s ⇒ Object
Overrides Object#to_s.
-
#trace ⇒ Object
(also: #tr)
Returns the trace (sum of diagonal elements) of the matrix.
-
#transpose ⇒ Object
(also: #t)
Returns the transpose of the matrix.
-
#unitary? ⇒ Boolean
Returns +true+ if this is a unitary matrix Raises an error if matrix is not square.
-
#upper_triangular? ⇒ Boolean
Returns +true+ if this is an upper triangular matrix.
-
#vstack(*matrices) ⇒ Object
Returns a new matrix resulting by stacking vertically the receiver with the given matrices.
-
#zero? ⇒ Boolean
Returns +true+ if this is a matrix with only zero elements.
Methods included from CoercionHelper
coerce_to, coerce_to_int, coerce_to_matrix
Methods included from Exception2MessageMapper
#Fail, Raise, #Raise, #bind, def_e2message, #def_e2message, #def_exception, def_exception, e2mm_message, extend_object, #fail
Methods included from Enumerable
Constructor Details
#initialize(rows, column_count = rows[0].size) ⇒ Matrix
Matrix.new is private; use Matrix.rows, columns, [], etc... to create.
284 285 286 287 288 289 290 |
# File 'opal/stdlib/matrix.rb', line 284 def initialize(rows, column_count = rows[0].size) # No checking is done at this point. rows must be an Array of Arrays. # column_count must be the size of the first row, if there is one, # otherwise it *must* be specified and can be any integer >= 0 @rows = rows @column_count = column_count end |
Instance Attribute Details
#column_count ⇒ Object (readonly) Also known as: column_size
Returns the number of columns.
324 325 326 |
# File 'opal/stdlib/matrix.rb', line 324 def column_count @column_count end |
Class Method Details
.[](*rows) ⇒ Object
Creates a matrix where each argument is a row. Matrix[ [25, 93], [-1, 66] ] => 25 93 -1 66
51 52 53 |
# File 'opal/stdlib/matrix.rb', line 51 def Matrix.[](*rows) rows(rows, false) end |
.build(row_count, column_count = row_count) ⇒ Object
Creates a matrix of size +row_count+ x +column_count+. It fills the values by calling the given block, passing the current row and column. Returns an enumerator if no block is given.
m = Matrix.build(2, 4) {|row, col| col - row } => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]] m = Matrix.build(3) { rand } => a 3x3 matrix with random elements
96 97 98 99 100 101 102 103 104 105 106 107 |
# File 'opal/stdlib/matrix.rb', line 96 def Matrix.build(row_count, column_count = row_count) row_count = CoercionHelper.coerce_to_int(row_count) column_count = CoercionHelper.coerce_to_int(column_count) raise ArgumentError if row_count < 0 || column_count < 0 return to_enum :build, row_count, column_count unless block_given? rows = Array.new(row_count) do |i| Array.new(column_count) do |j| yield i, j end end new rows, column_count end |
.column_vector(column) ⇒ Object
Creates a single-column matrix where the values of that column are as given in +column+. Matrix.column_vector([4,5,6]) => 4 5 6
182 183 184 185 |
# File 'opal/stdlib/matrix.rb', line 182 def Matrix.column_vector(column) column = convert_to_array(column) new [column].transpose, 1 end |
.columns(columns) ⇒ Object
Creates a matrix using +columns+ as an array of column vectors. Matrix.columns([[25, 93], [-1, 66]]) => 25 -1 93 66
81 82 83 |
# File 'opal/stdlib/matrix.rb', line 81 def Matrix.columns(columns) rows(columns, false).transpose end |
.combine(*matrices) ⇒ Object
Create a matrix by combining matrices entrywise, using the given block
x = Matrix[[6, 6], [4, 4]] y = Matrix[[1, 2], [3, 4]] Matrix.combine(x, y) {|a, b| a - b} # => Matrix[[5, 4], [1, 0]]
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# File 'opal/stdlib/matrix.rb', line 259 def Matrix.combine(*matrices) return to_enum(__method__, *matrices) unless block_given? return Matrix.empty if matrices.empty? matrices.map!(&CoercionHelper.method(:coerce_to_matrix)) x = matrices.first matrices.each do |m| Matrix.Raise ErrDimensionMismatch unless x.row_count == m.row_count && x.column_count == m.column_count end rows = Array.new(x.row_count) do |i| Array.new(x.column_count) do |j| yield matrices.map{|m| m[i,j]} end end new rows, x.column_count end |
.diagonal(*values) ⇒ Object
Creates a matrix where the diagonal elements are composed of +values+. Matrix.diagonal(9, 5, -3) => 9 0 0 0 5 0 0 0 -3
116 117 118 119 120 121 122 123 124 125 |
# File 'opal/stdlib/matrix.rb', line 116 def Matrix.diagonal(*values) size = values.size return Matrix.empty if size == 0 rows = Array.new(size) {|j| row = Array.new(size, 0) row[j] = values[j] row } new rows end |
.empty(row_count = 0, column_count = 0) ⇒ Object
Creates a empty matrix of +row_count+ x +column_count+. At least one of +row_count+ or +column_count+ must be 0.
m = Matrix.empty(2, 0) m == Matrix[ [], [] ] => true n = Matrix.empty(0, 3) n == Matrix.columns([ [], [], [] ]) => true m * n => Matrix[[0, 0, 0], [0, 0, 0]]
200 201 202 203 204 205 |
# File 'opal/stdlib/matrix.rb', line 200 def Matrix.empty(row_count = 0, column_count = 0) raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0 raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0 new([[]]*row_count, column_count) end |
.hstack(x, *matrices) ⇒ Object
Create a matrix by stacking matrices horizontally
x = Matrix[[1, 2], [3, 4]] y = Matrix[[5, 6], [7, 8]] Matrix.hstack(x, y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# File 'opal/stdlib/matrix.rb', line 235 def Matrix.hstack(x, *matrices) x = CoercionHelper.coerce_to_matrix(x) result = x.send(:rows).map(&:dup) total_column_count = x.column_count matrices.each do |m| m = CoercionHelper.coerce_to_matrix(m) if m.row_count != x.row_count raise ErrDimensionMismatch, "The given matrices must have #{x.row_count} rows, but one has #{m.row_count}" end result.each_with_index do |row, i| row.concat m.send(:rows)[i] end total_column_count += m.column_count end new result, total_column_count end |
.identity(n) ⇒ Object Also known as: unit, I
Creates an +n+ by +n+ identity matrix. Matrix.identity(2) => 1 0 0 1
144 145 146 |
# File 'opal/stdlib/matrix.rb', line 144 def Matrix.identity(n) scalar(n, 1) end |
.row_vector(row) ⇒ Object
Creates a single-row matrix where the values of that row are as given in +row+. Matrix.row_vector([4,5,6]) => 4 5 6
169 170 171 172 |
# File 'opal/stdlib/matrix.rb', line 169 def Matrix.row_vector(row) row = convert_to_array(row) new [row] end |
.rows(rows, copy = true) ⇒ Object
Creates a matrix where +rows+ is an array of arrays, each of which is a row of the matrix. If the optional argument +copy+ is false, use the given arrays as the internal structure of the matrix without copying. Matrix.rows([[25, 93], [-1, 66]]) => 25 93 -1 66
63 64 65 66 67 68 69 70 71 72 73 |
# File 'opal/stdlib/matrix.rb', line 63 def Matrix.rows(rows, copy = true) rows = convert_to_array(rows, copy) rows.map! do |row| convert_to_array(row, copy) end size = (rows[0] || []).size rows.each do |row| raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size end new rows, size end |
.scalar(n, value) ⇒ Object
Creates an +n+ by +n+ diagonal matrix where each diagonal element is +value+. Matrix.scalar(2, 5) => 5 0 0 5
134 135 136 |
# File 'opal/stdlib/matrix.rb', line 134 def Matrix.scalar(n, value) diagonal(*Array.new(n, value)) end |
.vstack(x, *matrices) ⇒ Object
Create a matrix by stacking matrices vertically
x = Matrix[[1, 2], [3, 4]] y = Matrix[[5, 6], [7, 8]] Matrix.vstack(x, y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
214 215 216 217 218 219 220 221 222 223 224 225 |
# File 'opal/stdlib/matrix.rb', line 214 def Matrix.vstack(x, *matrices) x = CoercionHelper.coerce_to_matrix(x) result = x.send(:rows).map(&:dup) matrices.each do |m| m = CoercionHelper.coerce_to_matrix(m) if m.column_count != x.column_count raise ErrDimensionMismatch, "The given matrices must have #{x.column_count} columns, but one has #{m.column_count}" end result.concat(m.send(:rows)) end new result, x.column_count end |
Instance Method Details
#*(m) ⇒ Object
Matrix multiplication. Matrix[[2,4], [6,8]] * Matrix.identity(2) => 2 4 6 8
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 |
# File 'opal/stdlib/matrix.rb', line 893 def *(m) # m is matrix or vector or number case(m) when Numeric rows = @rows.collect {|row| row.collect {|e| e * m } } return new_matrix rows, column_count when Vector m = self.class.column_vector(m) r = self * m return r.column(0) when Matrix Matrix.Raise ErrDimensionMismatch if column_count != m.row_count rows = Array.new(row_count) {|i| Array.new(m.column_count) {|j| (0 ... column_count).inject(0) do |vij, k| vij + self[i, k] * m[k, j] end } } return new_matrix rows, m.column_count else return apply_through_coercion(m, __method__) end end |
#**(other) ⇒ Object
Matrix exponentiation. Equivalent to multiplying the matrix by itself N times. Non integer exponents will be handled by diagonalizing the matrix.
Matrix[[7,6], [3,9]] ** 2 => 67 96 48 99
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 |
# File 'opal/stdlib/matrix.rb', line 1071 def **(other) case other when Integer x = self if other <= 0 x = self.inverse return self.class.identity(self.column_count) if other == 0 other = -other end z = nil loop do z = z ? z * x : x if other[0] == 1 return z if (other >>= 1).zero? x *= x end when Numeric v, d, v_inv = eigensystem v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv else Matrix.Raise ErrOperationNotDefined, "**", self.class, other.class end end |
#+(m) ⇒ Object
Matrix addition. Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]] => 6 0 -4 12
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 |
# File 'opal/stdlib/matrix.rb', line 926 def +(m) case m when Numeric Matrix.Raise ErrOperationNotDefined, "+", self.class, m.class when Vector m = self.class.column_vector(m) when Matrix else return apply_through_coercion(m, __method__) end Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count rows = Array.new(row_count) {|i| Array.new(column_count) {|j| self[i, j] + m[i, j] } } new_matrix rows, column_count end |
#+@ ⇒ Object
1094 1095 1096 |
# File 'opal/stdlib/matrix.rb', line 1094 def +@ self end |
#-(m) ⇒ Object
Matrix subtraction. Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]] => -8 2 8 1
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 |
# File 'opal/stdlib/matrix.rb', line 953 def -(m) case m when Numeric Matrix.Raise ErrOperationNotDefined, "-", self.class, m.class when Vector m = self.class.column_vector(m) when Matrix else return apply_through_coercion(m, __method__) end Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count rows = Array.new(row_count) {|i| Array.new(column_count) {|j| self[i, j] - m[i, j] } } new_matrix rows, column_count end |
#-@ ⇒ Object
1098 1099 1100 |
# File 'opal/stdlib/matrix.rb', line 1098 def -@ collect {|e| -e } end |
#/(other) ⇒ Object
Matrix division (multiplication by the inverse). Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]] => -7 1 -3 -6
980 981 982 983 984 985 986 987 988 989 990 991 992 |
# File 'opal/stdlib/matrix.rb', line 980 def /(other) case other when Numeric rows = @rows.collect {|row| row.collect {|e| e / other } } return new_matrix rows, column_count when Matrix return self * other.inverse else return apply_through_coercion(other, __method__) end end |
#==(other) ⇒ Object
Returns +true+ if and only if the two matrices contain equal elements.
855 856 857 858 859 |
# File 'opal/stdlib/matrix.rb', line 855 def ==(other) return false unless Matrix === other && column_count == other.column_count # necessary for empty matrices rows == other.rows end |
#[](i, j) ⇒ Object Also known as: element, component
Returns element (+i+,+j+) of the matrix. That is: row +i+, column +j+.
300 301 302 |
# File 'opal/stdlib/matrix.rb', line 300 def [](i, j) @rows.fetch(i){return nil}[j] end |
#[]=(i, j, v) ⇒ Object Also known as: set_element, set_component
306 307 308 |
# File 'opal/stdlib/matrix.rb', line 306 def []=(i, j, v) @rows[i][j] = v end |
#adjugate ⇒ Object
Returns the adjugate of the matrix.
Matrix[ [7,6],[3,9] ].adjugate => 9 -6 -3 7
629 630 631 632 633 634 |
# File 'opal/stdlib/matrix.rb', line 629 def adjugate Matrix.Raise ErrDimensionMismatch unless square? Matrix.build(row_count, column_count) do |row, column| cofactor(column, row) end end |
#antisymmetric? ⇒ Boolean
Returns +true+ if this is an antisymmetric matrix. Raises an error if matrix is not square.
808 809 810 811 812 813 814 |
# File 'opal/stdlib/matrix.rb', line 808 def antisymmetric? Matrix.Raise ErrDimensionMismatch unless square? each_with_index(:upper) do |e, row, col| return false unless e == -rows[col][row] end true end |
#clone ⇒ Object
Returns a clone of the matrix, so that the contents of each do not reference identical objects. There should be no good reason to do this since Matrices are immutable.
872 873 874 |
# File 'opal/stdlib/matrix.rb', line 872 def clone new_matrix @rows.map(&:dup), column_count end |
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator. See also Numeric#coerce.
1408 1409 1410 1411 1412 1413 1414 1415 |
# File 'opal/stdlib/matrix.rb', line 1408 def coerce(other) case other when Numeric return Scalar.new(other), self else raise TypeError, "#{self.class} can't be coerced into #{other.class}" end end |
#cofactor(row, column) ⇒ Object
Returns the (row, column) cofactor which is obtained by multiplying the first minor by (-1)**(row + column).
Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1) => -108
614 615 616 617 618 619 620 |
# File 'opal/stdlib/matrix.rb', line 614 def cofactor(row, column) raise RuntimeError, "cofactor of empty matrix is not defined" if empty? Matrix.Raise ErrDimensionMismatch unless square? det_of_minor = first_minor(row, column).determinant det_of_minor * (-1) ** (row + column) end |
#collect(&block) ⇒ Object Also known as: map
Returns a matrix that is the result of iteration of the given block over all elements of the matrix. Matrix[ [1,2], [3,4] ].collect { |e| e**2 } => 1 4 9 16
368 369 370 371 372 |
# File 'opal/stdlib/matrix.rb', line 368 def collect(&block) # :yield: e return to_enum(:collect) unless block_given? rows = @rows.collect{|row| row.collect(&block)} new_matrix rows, column_count end |
#column(j) ⇒ Object
Returns column vector number +j+ of the matrix as a Vector (starting at 0 like an array). When a block is given, the elements of that vector are iterated.
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
# File 'opal/stdlib/matrix.rb', line 345 def column(j) # :yield: e if block_given? return self if j >= column_count || j < -column_count row_count.times do |i| yield @rows[i][j] end self else return nil if j >= column_count || j < -column_count col = Array.new(row_count) {|i| @rows[i][j] } Vector.elements(col, false) end end |
#column_vectors ⇒ Object
Returns an array of the column vectors of the matrix. See Vector.
1429 1430 1431 1432 1433 |
# File 'opal/stdlib/matrix.rb', line 1429 def column_vectors Array.new(column_count) {|i| column(i) } end |
#combine(*matrices, &block) ⇒ Object
277 278 279 |
# File 'opal/stdlib/matrix.rb', line 277 def combine(*matrices, &block) Matrix.combine(self, *matrices, &block) end |
#conjugate ⇒ Object Also known as: conj
Returns the conjugate of the matrix. Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]] => 1+2i i 0 1 2 3 Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate => 1-2i -i 0 1 2 3
1354 1355 1356 |
# File 'opal/stdlib/matrix.rb', line 1354 def conjugate collect(&:conjugate) end |
#determinant ⇒ Object Also known as: det
Returns the determinant of the matrix.
Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.
Matrix[[7,6], [3,9]].determinant => 45
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 |
# File 'opal/stdlib/matrix.rb', line 1116 def determinant Matrix.Raise ErrDimensionMismatch unless square? m = @rows case row_count # Up to 4x4, give result using Laplacian expansion by minors. # This will typically be faster, as well as giving good results # in case of Floats when 0 +1 when 1 + m[0][0] when 2 + m[0][0] * m[1][1] - m[0][1] * m[1][0] when 3 m0, m1, m2 = m + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \ - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \ + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0] when 4 m0, m1, m2, m3 = m + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \ - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \ + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \ - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \ + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \ - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \ + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \ - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \ + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \ - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \ + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \ - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0] else # For bigger matrices, use an efficient and general algorithm. # Currently, we use the Gauss-Bareiss algorithm end end |
#determinant_e ⇒ Object Also known as: det_e
deprecated; use Matrix#determinant
1198 1199 1200 1201 |
# File 'opal/stdlib/matrix.rb', line 1198 def determinant_e warn "Matrix#determinant_e is deprecated; use #determinant", uplevel: 1 determinant end |
#diagonal? ⇒ Boolean
Returns +true+ if this is a diagonal matrix. Raises an error if matrix is not square.
675 676 677 678 |
# File 'opal/stdlib/matrix.rb', line 675 def diagonal? Matrix.Raise ErrDimensionMismatch unless square? each(:off_diagonal).all?(&:zero?) end |
#each(which = :all) ⇒ Object
Yields all elements of the matrix, starting with those of the first row, or returns an Enumerator if no block given. Elements can be restricted by passing an argument:
- :all (default): yields all elements
- :diagonal: yields only elements on the diagonal
- :off_diagonal: yields all elements except on the diagonal
- :lower: yields only elements on or below the diagonal
- :strict_lower: yields only elements below the diagonal
- :strict_upper: yields only elements above the diagonal
- :upper: yields only elements on or above the diagonal
Matrix[ [1,2], [3,4] ].each { |e| puts e } # => prints the numbers 1 to 4 Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# File 'opal/stdlib/matrix.rb', line 391 def each(which = :all) # :yield: e return to_enum :each, which unless block_given? last = column_count - 1 case which when :all block = Proc.new @rows.each do |row| row.each(&block) end when :diagonal @rows.each_with_index do |row, row_index| yield row.fetch(row_index){return self} end when :off_diagonal @rows.each_with_index do |row, row_index| column_count.times do |col_index| yield row[col_index] unless row_index == col_index end end when :lower @rows.each_with_index do |row, row_index| 0.upto([row_index, last].min) do |col_index| yield row[col_index] end end when :strict_lower @rows.each_with_index do |row, row_index| [row_index, column_count].min.times do |col_index| yield row[col_index] end end when :strict_upper @rows.each_with_index do |row, row_index| (row_index+1).upto(last) do |col_index| yield row[col_index] end end when :upper @rows.each_with_index do |row, row_index| row_index.upto(last) do |col_index| yield row[col_index] end end else raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper" end self end |
#each_with_index(which = :all) ⇒ Object
Same as #each, but the row index and column index in addition to the element
Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col| puts "#e at ##row, #col" end # => Prints: # 1 at 0, 0 # 2 at 0, 1 # 3 at 1, 0 # 4 at 1, 1
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
# File 'opal/stdlib/matrix.rb', line 452 def each_with_index(which = :all) # :yield: e, row, column return to_enum :each_with_index, which unless block_given? last = column_count - 1 case which when :all @rows.each_with_index do |row, row_index| row.each_with_index do |e, col_index| yield e, row_index, col_index end end when :diagonal @rows.each_with_index do |row, row_index| yield row.fetch(row_index){return self}, row_index, row_index end when :off_diagonal @rows.each_with_index do |row, row_index| column_count.times do |col_index| yield row[col_index], row_index, col_index unless row_index == col_index end end when :lower @rows.each_with_index do |row, row_index| 0.upto([row_index, last].min) do |col_index| yield row[col_index], row_index, col_index end end when :strict_lower @rows.each_with_index do |row, row_index| [row_index, column_count].min.times do |col_index| yield row[col_index], row_index, col_index end end when :strict_upper @rows.each_with_index do |row, row_index| (row_index+1).upto(last) do |col_index| yield row[col_index], row_index, col_index end end when :upper @rows.each_with_index do |row, row_index| row_index.upto(last) do |col_index| yield row[col_index], row_index, col_index end end else raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper" end self end |
#eigensystem ⇒ Object Also known as: eigen
Returns the Eigensystem of the matrix; see +EigenvalueDecomposition+. m = Matrix[[1, 2], [3, 4]] v, d, v_inv = m.eigensystem d.diagonal? # => true v.inv == v_inv # => true (v * d * v_inv).round(5) == m # => true
1321 1322 1323 |
# File 'opal/stdlib/matrix.rb', line 1321 def eigensystem EigenvalueDecomposition.new(self) end |
#elements_to_f ⇒ Object
Deprecated.
Use map(&:to_f)
1452 1453 1454 1455 |
# File 'opal/stdlib/matrix.rb', line 1452 def elements_to_f warn "Matrix#elements_to_f is deprecated, use map(&:to_f)", uplevel: 1 map(&:to_f) end |
#elements_to_i ⇒ Object
Deprecated.
Use map(&:to_i)
1460 1461 1462 1463 |
# File 'opal/stdlib/matrix.rb', line 1460 def elements_to_i warn "Matrix#elements_to_i is deprecated, use map(&:to_i)", uplevel: 1 map(&:to_i) end |
#elements_to_r ⇒ Object
Deprecated.
Use map(&:to_r)
1468 1469 1470 1471 |
# File 'opal/stdlib/matrix.rb', line 1468 def elements_to_r warn "Matrix#elements_to_r is deprecated, use map(&:to_r)", uplevel: 1 map(&:to_r) end |
#empty? ⇒ Boolean
Returns +true+ if this is an empty matrix, i.e. if the number of rows or the number of columns is 0.
684 685 686 |
# File 'opal/stdlib/matrix.rb', line 684 def empty? column_count == 0 || row_count == 0 end |
#eql?(other) ⇒ Boolean
861 862 863 864 865 |
# File 'opal/stdlib/matrix.rb', line 861 def eql?(other) return false unless Matrix === other && column_count == other.column_count # necessary for empty matrices rows.eql? other.rows end |
#first_minor(row, column) ⇒ Object
Returns the submatrix obtained by deleting the specified row and column.
Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2) => 9 0 0 0 0 0 0 0 4
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
# File 'opal/stdlib/matrix.rb', line 587 def first_minor(row, column) raise RuntimeError, "first_minor of empty matrix is not defined" if empty? unless 0 <= row && row < row_count raise ArgumentError, "invalid row (#{row.inspect} for 0..#{row_count - 1})" end unless 0 <= column && column < column_count raise ArgumentError, "invalid column (#{column.inspect} for 0..#{column_count - 1})" end arrays = to_a arrays.delete_at(row) arrays.each do |array| array.delete_at(column) end new_matrix arrays, column_count - 1 end |
#hadamard_product(m) ⇒ Object Also known as: entrywise_product
Hadamard product Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]]) => 1 4 9 8
1000 1001 1002 |
# File 'opal/stdlib/matrix.rb', line 1000 def hadamard_product(m) combine(m){|a, b| a * b} end |
#hash ⇒ Object
Returns a hash-code for the matrix.
879 880 881 |
# File 'opal/stdlib/matrix.rb', line 879 def hash @rows.hash end |
#hermitian? ⇒ Boolean
Returns +true+ if this is an hermitian matrix. Raises an error if matrix is not square.
692 693 694 695 696 697 |
# File 'opal/stdlib/matrix.rb', line 692 def hermitian? Matrix.Raise ErrDimensionMismatch unless square? each_with_index(:upper).all? do |e, row, col| e == rows[col][row].conj end end |
#hstack(*matrices) ⇒ Object
Returns a new matrix resulting by stacking horizontally the receiver with the given matrices
x = Matrix[[1, 2], [3, 4]] y = Matrix[[5, 6], [7, 8]] x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
1212 1213 1214 |
# File 'opal/stdlib/matrix.rb', line 1212 def hstack(*matrices) self.class.hstack(self, *matrices) end |
#imaginary ⇒ Object Also known as: imag
Returns the imaginary part of the matrix. Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]] => 1+2i i 0 1 2 3 Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary => 2i i 0 0 0 0
1368 1369 1370 |
# File 'opal/stdlib/matrix.rb', line 1368 def imaginary collect(&:imaginary) end |
#index(*args) ⇒ Object Also known as: find_index
:call-seq: index(value, selector = :all) -> [row, column] index(selector = :all){ block } -> [row, column] index(selector = :all) -> an_enumerator
The index method is specialized to return the index as [row, column] It also accepts an optional +selector+ argument, see #each for details.
Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1] Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
# File 'opal/stdlib/matrix.rb', line 515 def index(*args) raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2 which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all return to_enum :find_index, which, *args unless block_given? || args.size == 1 if args.size == 1 value = args.first each_with_index(which) do |e, row_index, col_index| return row_index, col_index if e == value end else each_with_index(which) do |e, row_index, col_index| return row_index, col_index if yield e end end nil end |
#inspect ⇒ Object
Overrides Object#inspect
1493 1494 1495 1496 1497 1498 1499 |
# File 'opal/stdlib/matrix.rb', line 1493 def inspect if empty? "#{self.class}.empty(#{row_count}, #{column_count})" else "#{self.class}#{@rows.inspect}" end end |
#inverse ⇒ Object Also known as: inv
Returns the inverse of the matrix. Matrix[[-1, -1], [0, -1]].inverse => -1 1 0 -1
1011 1012 1013 1014 |
# File 'opal/stdlib/matrix.rb', line 1011 def inverse Matrix.Raise ErrDimensionMismatch unless square? self.class.I(row_count).send(:inverse_from, self) end |
#laplace_expansion(row: nil, column: nil) ⇒ Object Also known as: cofactor_expansion
Returns the Laplace expansion along given row or column.
Matrix[[7,6], [3,9]].laplace_expansion(column: 1) => 45
Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0) => Vector[3, -2]
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
# File 'opal/stdlib/matrix.rb', line 646 def laplace_expansion(row: nil, column: nil) num = row || column if !num || (row && column) raise ArgumentError, "exactly one the row or column arguments must be specified" end Matrix.Raise ErrDimensionMismatch unless square? raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty? unless 0 <= num && num < row_count raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})" end send(row ? :row : :column, num).map.with_index { |e, k| e * cofactor(*(row ? [num, k] : [k,num])) }.inject(:+) end |
#lower_triangular? ⇒ Boolean
Returns +true+ if this is a lower triangular matrix.
702 703 704 |
# File 'opal/stdlib/matrix.rb', line 702 def lower_triangular? each(:strict_upper).all?(&:zero?) end |
#lup ⇒ Object Also known as: lup_decomposition
Returns the LUP decomposition of the matrix; see +LUPDecomposition+. a = Matrix[[1, 2], [3, 4]] l, u, p = a.lup l.lower_triangular? # => true u.upper_triangular? # => true p.permutation? # => true l * u == p * a # => true a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
1336 1337 1338 |
# File 'opal/stdlib/matrix.rb', line 1336 def lup LUPDecomposition.new(self) end |
#minor(*param) ⇒ Object
Returns a section of the matrix. The parameters are either:
- start_row, nrows, start_col, ncols; OR
- row_range, col_range
Matrix.diagonal(9, 5, -3).minor(0..1, 0..2) => 9 0 0 0 5 0
Like Array#[], negative indices count backward from the end of the row or column (-1 is the last element). Returns nil if the starting row or column is greater than row_count or column_count respectively.
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 |
# File 'opal/stdlib/matrix.rb', line 546 def minor(*param) case param.size when 2 row_range, col_range = param from_row = row_range.first from_row += row_count if from_row < 0 to_row = row_range.end to_row += row_count if to_row < 0 to_row += 1 unless row_range.exclude_end? size_row = to_row - from_row from_col = col_range.first from_col += column_count if from_col < 0 to_col = col_range.end to_col += column_count if to_col < 0 to_col += 1 unless col_range.exclude_end? size_col = to_col - from_col when 4 from_row, size_row, from_col, size_col = param return nil if size_row < 0 || size_col < 0 from_row += row_count if from_row < 0 from_col += column_count if from_col < 0 else raise ArgumentError, param.inspect end return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0 rows = @rows[from_row, size_row].collect{|row| row[from_col, size_col] } new_matrix rows, [column_count - from_col, size_col].min end |
#normal? ⇒ Boolean
Returns +true+ if this is a normal matrix. Raises an error if matrix is not square.
710 711 712 713 714 715 716 717 718 719 720 721 722 |
# File 'opal/stdlib/matrix.rb', line 710 def normal? Matrix.Raise ErrDimensionMismatch unless square? rows.each_with_index do |row_i, i| rows.each_with_index do |row_j, j| s = 0 rows.each_with_index do |row_k, k| s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j] end return false unless s == 0 end end true end |
#orthogonal? ⇒ Boolean
Returns +true+ if this is an orthogonal matrix Raises an error if matrix is not square.
728 729 730 731 732 733 734 735 736 737 738 739 740 |
# File 'opal/stdlib/matrix.rb', line 728 def orthogonal? Matrix.Raise ErrDimensionMismatch unless square? rows.each_with_index do |row, i| column_count.times do |j| s = 0 row_count.times do |k| s += row[k] * rows[k][j] end return false unless s == (i == j ? 1 : 0) end end true end |
#permutation? ⇒ Boolean
Returns +true+ if this is a permutation matrix Raises an error if matrix is not square.
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 |
# File 'opal/stdlib/matrix.rb', line 746 def permutation? Matrix.Raise ErrDimensionMismatch unless square? cols = Array.new(column_count) rows.each_with_index do |row, i| found = false row.each_with_index do |e, j| if e == 1 return false if found || cols[j] found = cols[j] = true elsif e != 0 return false end end return false unless found end true end |
#rank ⇒ Object
Returns the rank of the matrix. Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.
Matrix[[7,6], [3,9]].rank => 2
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 |
# File 'opal/stdlib/matrix.rb', line 1225 def rank # We currently use Bareiss' multistep integer-preserving gaussian elimination # (see comments on determinant) a = to_a last_column = column_count - 1 last_row = row_count - 1 pivot_row = 0 previous_pivot = 1 0.upto(last_column) do |k| switch_row = (pivot_row .. last_row).find {|row| a[row][k] != 0 } if switch_row a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row pivot = a[pivot_row][k] (pivot_row+1).upto(last_row) do |i| ai = a[i] (k+1).upto(last_column) do |j| ai[j] = (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot end end pivot_row += 1 previous_pivot = pivot end end pivot_row end |
#rank_e ⇒ Object
deprecated; use Matrix#rank
1256 1257 1258 1259 |
# File 'opal/stdlib/matrix.rb', line 1256 def rank_e warn "Matrix#rank_e is deprecated; use #rank", uplevel: 1 rank end |
#real ⇒ Object
Returns the real part of the matrix. Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]] => 1+2i i 0 1 2 3 Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real => 1 0 0 1 2 3
1382 1383 1384 |
# File 'opal/stdlib/matrix.rb', line 1382 def real collect(&:real) end |
#real? ⇒ Boolean
Returns +true+ if all entries of the matrix are real.
767 768 769 |
# File 'opal/stdlib/matrix.rb', line 767 def real? all?(&:real?) end |
#rect ⇒ Object Also known as: rectangular
Returns an array containing matrices corresponding to the real and imaginary parts of the matrix
m.rect == [m.real, m.imag] # ==> true for all matrices m
1392 1393 1394 |
# File 'opal/stdlib/matrix.rb', line 1392 def rect [real, imag] end |
#regular? ⇒ Boolean
Returns +true+ if this is a regular (i.e. non-singular) matrix.
774 775 776 |
# File 'opal/stdlib/matrix.rb', line 774 def regular? not singular? end |
#round(ndigits = 0) ⇒ Object
Returns a matrix with entries rounded to the given precision (see Float#round)
1264 1265 1266 |
# File 'opal/stdlib/matrix.rb', line 1264 def round(ndigits=0) map{|e| e.round(ndigits)} end |
#row(i, &block) ⇒ Object
Returns row vector number +i+ of the matrix as a Vector (starting at 0 like an array). When a block is given, the elements of that vector are iterated.
331 332 333 334 335 336 337 338 |
# File 'opal/stdlib/matrix.rb', line 331 def row(i, &block) # :yield: e if block_given? @rows.fetch(i){return self}.each(&block) self else Vector.elements(@rows.fetch(i){return nil}) end end |
#row_count ⇒ Object Also known as: row_size
Returns the number of rows.
316 317 318 |
# File 'opal/stdlib/matrix.rb', line 316 def row_count @rows.size end |
#row_vectors ⇒ Object
Returns an array of the row vectors of the matrix. See Vector.
1420 1421 1422 1423 1424 |
# File 'opal/stdlib/matrix.rb', line 1420 def row_vectors Array.new(row_count) {|i| row(i) } end |
#singular? ⇒ Boolean
Returns +true+ if this is a singular matrix.
781 782 783 |
# File 'opal/stdlib/matrix.rb', line 781 def singular? determinant == 0 end |
#square? ⇒ Boolean
Returns +true+ if this is a square matrix.
788 789 790 |
# File 'opal/stdlib/matrix.rb', line 788 def square? column_count == row_count end |
#symmetric? ⇒ Boolean
Returns +true+ if this is a symmetric matrix. Raises an error if matrix is not square.
796 797 798 799 800 801 802 |
# File 'opal/stdlib/matrix.rb', line 796 def symmetric? Matrix.Raise ErrDimensionMismatch unless square? each_with_index(:strict_upper) do |e, row, col| return false if e != rows[col][row] end true end |
#to_a ⇒ Object
Returns an array of arrays that describe the rows of the matrix.
1445 1446 1447 |
# File 'opal/stdlib/matrix.rb', line 1445 def to_a @rows.collect(&:dup) end |
#to_matrix ⇒ Object
Explicit conversion to a Matrix. Returns self
1438 1439 1440 |
# File 'opal/stdlib/matrix.rb', line 1438 def to_matrix self end |
#to_s ⇒ Object
Overrides Object#to_s
1480 1481 1482 1483 1484 1485 1486 1487 1488 |
# File 'opal/stdlib/matrix.rb', line 1480 def to_s if empty? "#{self.class}.empty(#{row_count}, #{column_count})" else "#{self.class}[" + @rows.collect{|row| "[" + row.collect{|e| e.to_s}.join(", ") + "]" }.join(", ")+"]" end end |
#trace ⇒ Object Also known as: tr
Returns the trace (sum of diagonal elements) of the matrix. Matrix[[7,6], [3,9]].trace => 16
1273 1274 1275 1276 1277 1278 |
# File 'opal/stdlib/matrix.rb', line 1273 def trace Matrix.Raise ErrDimensionMismatch unless square? (0...column_count).inject(0) do |tr, i| tr + @rows[i][i] end end |
#transpose ⇒ Object Also known as: t
Returns the transpose of the matrix. Matrix[[1,2], [3,4], [5,6]] => 1 2 3 4 5 6 Matrix[[1,2], [3,4], [5,6]].transpose => 1 3 5 2 4 6
1291 1292 1293 1294 |
# File 'opal/stdlib/matrix.rb', line 1291 def transpose return self.class.empty(column_count, 0) if row_count.zero? new_matrix @rows.transpose, row_count end |
#unitary? ⇒ Boolean
Returns +true+ if this is a unitary matrix Raises an error if matrix is not square.
820 821 822 823 824 825 826 827 828 829 830 831 832 |
# File 'opal/stdlib/matrix.rb', line 820 def unitary? Matrix.Raise ErrDimensionMismatch unless square? rows.each_with_index do |row, i| column_count.times do |j| s = 0 row_count.times do |k| s += row[k].conj * rows[k][j] end return false unless s == (i == j ? 1 : 0) end end true end |
#upper_triangular? ⇒ Boolean
Returns +true+ if this is an upper triangular matrix.
837 838 839 |
# File 'opal/stdlib/matrix.rb', line 837 def upper_triangular? each(:strict_lower).all?(&:zero?) end |
#vstack(*matrices) ⇒ Object
Returns a new matrix resulting by stacking vertically the receiver with the given matrices
x = Matrix[[1, 2], [3, 4]] y = Matrix[[5, 6], [7, 8]] x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
1305 1306 1307 |
# File 'opal/stdlib/matrix.rb', line 1305 def vstack(*matrices) self.class.vstack(self, *matrices) end |
#zero? ⇒ Boolean
Returns +true+ if this is a matrix with only zero elements
844 845 846 |
# File 'opal/stdlib/matrix.rb', line 844 def zero? all?(&:zero?) end |