runtime.js
``
@note A few conventions for the documentation of this file:
- Always use "//" (in contrast with "/**/")
- The syntax used is Yardoc (yardoc.org), which is intended for Ruby (se below)
@param
and@return
types should be preceded byJS.
when referring to JavaScript constructors (e.g.JS.Function
) otherwise Ruby is assumed.nil
andnull
being unambiguous refer to the respective objects/values in Ruby and JavaScript- This is still WIP :) so please give feedback and suggestions on how to improve or for alternative solutions
The way the code is digested before going through Yardoc is a secret kept in the docs repo (https://github.com/opal/docs/tree/master).
if (typeof(globalThis) !== 'undefined') { global_object = globalThis; }
Detect the global object
if (typeof(globalThis) !== 'undefined') { global_object = globalThis; }
if (typeof(global_object.console) === 'object')
Setup a dummy console object if missing
if (typeof(global_object.console) === 'object') {
BasicObject
The actual class for BasicObject
var BasicObject;
_Object
The actual Object class. The leading underscore is to avoid confusion with window.Object()
var _Object;
Module
The actual Module class
var Module;
Class
The actual Class class
var Class;
Opal = global_object.Opal = {}
The Opal object that is exposed globally
var Opal = global_object.Opal = {};
Opal.global = global_object
This is a useful reference to global object inside ruby files
Opal.global = global_object;
Opal.config =
Configure runtime behavior with regards to require and unsupported features
Opal.config = {
$has_own = Object.hasOwnProperty
Minify common function calls
var $has_own = Object.hasOwnProperty;
nil_id = 4
Nil object id is always 4
var nil_id = 4;
unique_id = nil_id
Generates even sequential numbers greater than 4 (nil_id) to serve as unique ids for ruby objects
var unique_id = nil_id;
Opal.uid = function()
Return next unique id
Opal.uid = function() {
unique_id += 2;
return unique_id;
};
Opal.id = function(obj)
Retrieve or assign the id of an object
Opal.id = function(obj) {
if (obj.$$is_number) return (obj * 2)+1;
if (obj.$$id != null) {
return obj.$$id;
}
$defineProperty(obj, '$$id', Opal.uid());
return obj.$$id;
};
Opal.gvars = {}
Globals table
Opal.gvars = {};
Opal.exit = function(status) { if (Opal.gvars.DEBUG) console.log('Exited with status '+status); }
Exit function, this should be replaced by platform specific implementation (See nodejs and chrome for examples)
Opal.exit = function(status) { if (Opal.gvars.DEBUG) console.log('Exited with status '+status); };
Opal.exceptions = []
keeps track of exceptions for $!
Opal.exceptions = [];
Opal.pop_exception = function()
@private
Pops an exception from the stack and updates $!
.
Opal.pop_exception = function() {
var exception = Opal.exceptions.pop();
if (exception) {
Opal.gvars["!"] = exception;
Opal.gvars["@"] = exception.$backtrace();
}
else {
Opal.gvars["!"] = Opal.gvars["@"] = nil;
}
};
Opal.inspect = function(obj)
Inspect any kind of object, including non Ruby ones
Opal.inspect = function(obj) {
if (obj === undefined) {
return "undefined";
}
else if (obj === null) {
return "null";
}
else if (!obj.$$class) {
return obj.toString();
}
else {
return obj.$inspect();
}
};
object[name] = initialValue
Special case for: s = "string" def s.m; end String class is the only class that:
- compiles to JS primitive
- allows method definition directly on instances numbers, true, false and null do not support it.
object[name] = initialValue;
``
Helpers
Opal.trace_class = false
TracePoint support
Support for TracePoint.trace(:class) do ... end
Opal.trace_class = false;
``
Constants
For future reference:
- The Rails autoloading guide (http://guides.rubyonrails.org/v5.0/autoloading_and_reloading_constants.html)
- @ConradIrwin's 2012 post on “Everything you ever wanted to know about constant lookup in Ruby” (http://cirw.in/blog/constant-lookup.html)
Legend of MRI concepts/names:
- constant reference (cref): the module/class that acts as a namespace
- nesting: the namespaces wrapping the current scope, e.g. nesting inside
module A; module B::C; end; end
is[B::C, A]
function const_get_name(cref, name)
Get the constant in the scope of the current cref
function const_get_name(cref, name) {
if (cref) {
if (cref.$$const[name] != null) { return cref.$$const[name]; }
if (cref.$$autoload && cref.$$autoload[name]) {
return handle_autoload(cref, name);
}
}
}
function const_lookup_nesting(nesting, name)
Walk up the nesting array looking for the constant
function const_lookup_nesting(nesting, name) {
var i, ii, constant;
if (nesting.length === 0) return;
// If the nesting is not empty the constant is looked up in its elements
// and in order. The ancestors of those elements are ignored.
for (i = 0, ii = nesting.length; i < ii; i++) {
constant = nesting[i].$$const[name];
if (constant != null) {
return constant;
} else if (nesting[i].$$autoload && nesting[i].$$autoload[name]) {
return handle_autoload(nesting[i], name);
}
}
}
function const_lookup_ancestors(cref, name)
Walk up the ancestors chain looking for the constant
function const_lookup_ancestors(cref, name) {
var i, ii, ancestors;
if (cref == null) return;
ancestors = Opal.ancestors(cref);
for (i = 0, ii = ancestors.length; i < ii; i++) {
if (ancestors[i].$$const && $has_own.call(ancestors[i].$$const, name)) {
return ancestors[i].$$const[name];
} else if (ancestors[i].$$autoload && ancestors[i].$$autoload[name]) {
return handle_autoload(ancestors[i], name);
}
}
}
function const_lookup_Object(cref, name)
Walk up Object's ancestors chain looking for the constant, but only if cref is missing or a module.
function const_lookup_Object(cref, name) {
if (cref == null || cref.$$is_module) {
return const_lookup_ancestors(_Object, name);
}
}
function const_missing(cref, name, skip_missing)
Call const_missing if nothing else worked
function const_missing(cref, name, skip_missing) {
if (!skip_missing) {
return (cref || _Object).$const_missing(name);
}
}
Opal.const_get_local = function(cref, name, skip_missing)
Look for the constant just in the current cref or call #const_missing
Opal.const_get_local = function(cref, name, skip_missing) {
var result;
if (cref == null) return;
if (cref === '::') cref = _Object;
if (!cref.$$is_module && !cref.$$is_class) {
throw new Opal.TypeError(cref.toString() + " is not a class/module");
}
result = const_get_name(cref, name); if (result != null) return result;
result = const_missing(cref, name, skip_missing); if (result != null) return result;
};
Opal.const_get_qualified = function(cref, name, skip_missing)
Look for the constant relative to a cref or call #const_missing
(when the
constant is prefixed by ::
).
Opal.const_get_qualified = function(cref, name, skip_missing) {
var result, cache, cached, current_version = Opal.const_cache_version;
if (cref == null) return;
if (cref === '::') cref = _Object;
if (!cref.$$is_module && !cref.$$is_class) {
throw new Opal.TypeError(cref.toString() + " is not a class/module");
}
if ((cache = cref.$$const_cache) == null) {
$defineProperty(cref, '$$const_cache', Object.create(null));
cache = cref.$$const_cache;
}
cached = cache[name];
if (cached == null || cached[0] !== current_version) {
((result = const_get_name(cref, name)) != null) ||
((result = const_lookup_ancestors(cref, name)) != null);
cache[name] = [current_version, result];
} else {
result = cached[1];
}
return result != null ? result : const_missing(cref, name, skip_missing);
};
Opal.const_cache_version = 1
Initialize the top level constant cache generation counter
Opal.const_cache_version = 1;
Opal.const_get_relative = function(nesting, name, skip_missing)
Look for the constant in the open using the current nesting and the nearest
cref ancestors or call #const_missing
(when the constant has no :: prefix).
Opal.const_get_relative = function(nesting, name, skip_missing) {
var cref = nesting[0], result, current_version = Opal.const_cache_version, cache, cached;
if ((cache = nesting.$$const_cache) == null) {
$defineProperty(nesting, '$$const_cache', Object.create(null));
cache = nesting.$$const_cache;
}
cached = cache[name];
if (cached == null || cached[0] !== current_version) {
((result = const_get_name(cref, name)) != null) ||
((result = const_lookup_nesting(nesting, name)) != null) ||
((result = const_lookup_ancestors(cref, name)) != null) ||
((result = const_lookup_Object(cref, name)) != null);
cache[name] = [current_version, result];
} else {
result = cached[1];
}
return result != null ? result : const_missing(cref, name, skip_missing);
};
Opal.const_set = function(cref, name, value)
Register the constant on a cref and opportunistically set the name of unnamed classes/modules.
Opal.const_set = function(cref, name, value) {
if (cref == null || cref === '::') cref = _Object;
if (value.$$is_a_module) {
if (value.$$name == null || value.$$name === nil) value.$$name = name;
if (value.$$base_module == null) value.$$base_module = cref;
}
cref.$$const = (cref.$$const || Object.create(null));
cref.$$const[name] = value;
// Add a short helper to navigate constants manually.
// @example
// Opal.$$.Regexp.$$.IGNORECASE
cref.$$ = cref.$$const;
Opal.const_cache_version++;
// Expose top level constants onto the Opal object
if (cref === _Object) Opal[name] = value;
// Name new class directly onto current scope (Opal.Foo.Baz = klass)
$defineProperty(cref, name, value);
return value;
};
Opal.constants = function(cref, inherit)
Get all the constants reachable from a given cref, by default will include inherited constants.
Opal.constants = function(cref, inherit) {
if (inherit == null) inherit = true;
var module, modules = [cref], i, ii, constants = {}, constant;
if (inherit) modules = modules.concat(Opal.ancestors(cref));
if (inherit && cref.$$is_module) modules = modules.concat([Opal.Object]).concat(Opal.ancestors(Opal.Object));
for (i = 0, ii = modules.length; i < ii; i++) {
module = modules[i];
// Do not show Objects constants unless we're querying Object itself
if (cref !== _Object && module == _Object) break;
for (constant in module.$$const) {
constants[constant] = true;
}
if (module.$$autoload) {
for (constant in module.$$autoload) {
constants[constant] = true;
}
}
}
return Object.keys(constants);
};
Opal.const_remove = function(cref, name)
Remove a constant from a cref.
Opal.const_remove = function(cref, name) {
Opal.const_cache_version++;
if (cref.$$const[name] != null) {
var old = cref.$$const[name];
delete cref.$$const[name];
return old;
}
if (cref.$$autoload && cref.$$autoload[name]) {
delete cref.$$autoload[name];
return nil;
}
throw Opal.NameError.$new("constant "+cref+"::"+cref.$name()+" not defined");
};
Opal.$$ = Opal.const_get_relative
Setup some shortcuts to reduce compiled size
Opal.$$ = Opal.const_get_relative;
``
Modules & Classes
Opal.allocate_class = function(name, superclass)
A class Foo; end
expression in ruby is compiled to call this runtime
method which either returns an existing class of the given name, or creates
a new class in the given base
scope.
If a constant with the given name exists, then we check to make sure that
it is a class and also that the superclasses match. If either of these
fail, then we raise a TypeError
. Note, superclass
may be null if one
was not specified in the ruby code.
We pass a constructor to this method of the form function ClassName() {}
simply so that classes show up with nicely formatted names inside debuggers
in the web browser (or node/sprockets).
The scope
is the current self
value where the class is being created
from. We use this to get the scope for where the class should be created.
If scope
is an object (not a class/module), we simple get its class and
use that as the scope instead.
@param scope [Object] where the class is being created @param superclass [Class,null] superclass of the new class (may be null) @param id [String] the name of the class to be created @param constructor [JS.Function] function to use as constructor
@return new [Class] or existing ruby class
Opal.allocate_class = function(name, superclass) {
var klass, constructor;
if (superclass != null && superclass.$$bridge) {
// Inheritance from bridged classes requires
// calling original JS constructors
constructor = function() {
var args = $slice.call(arguments),
self = new ($bind.apply(superclass.$$constructor, [null].concat(args)))();
// and replacing a __proto__ manually
$set_proto(self, klass.$$prototype);
return self;
}
} else {
constructor = function(){};
}
if (name) {
$defineProperty(constructor, 'displayName', '::'+name);
}
klass = constructor;
$defineProperty(klass, '$$name', name);
$defineProperty(klass, '$$constructor', constructor);
$defineProperty(klass, '$$prototype', constructor.prototype);
$defineProperty(klass, '$$const', {});
$defineProperty(klass, '$$is_class', true);
$defineProperty(klass, '$$is_a_module', true);
$defineProperty(klass, '$$super', superclass);
$defineProperty(klass, '$$cvars', {});
$defineProperty(klass, '$$own_included_modules', []);
$defineProperty(klass, '$$own_prepended_modules', []);
$defineProperty(klass, '$$ancestors', []);
$defineProperty(klass, '$$ancestors_cache_version', null);
$defineProperty(klass.$$prototype, '$$class', klass);
// By default if there are no singleton class methods
// __proto__ is Class.prototype
// Later singleton methods generate a singleton_class
// and inject it into ancestors chain
if (Opal.Class) {
$set_proto(klass, Opal.Class.prototype);
}
if (superclass != null) {
$set_proto(klass.$$prototype, superclass.$$prototype);
if (superclass.$$meta) {
// If superclass has metaclass then we have explicitely inherit it.
Opal.build_class_singleton_class(klass);
}
}
return klass;
};
klass = const_get_name(scope, name)
Try to find the class in the current scope
var klass = const_get_name(scope, name);
if (klass)
If the class exists in the scope, then we must use that
if (klass) {
if (!klass.$$is_class)
Make sure the existing constant is a class, or raise error
if (!klass.$$is_class) {
scope = _Object
Global scope
scope = _Object;
scope = scope.$$class
Scope is an object, use its class
scope = scope.$$class;
if (
If the superclass is not an Opal-generated class then we're bridging a native JS class
if (
ensureSuperclassMatch(klass, superclass)
Make sure existing class has same superclass
ensureSuperclassMatch(klass, superclass);
``
Class doesn't exist, create a new one with given superclass...
if (superclass == null)
Not specifying a superclass means we can assume it to be Object
if (superclass == null) {
klass = Opal.allocate_class(name, superclass)
Create the class object (instance of Class)
klass = Opal.allocate_class(name, superclass);
if (superclass.$inherited)
Call .inherited() hook with new class on the superclass
if (superclass.$inherited) {
Opal.allocate_module = function(name)
Define new module (or return existing module). The given scope
is basically
the current self
value the module
statement was defined in. If this is
a ruby module or class, then it is used, otherwise if the scope is a ruby
object then that objects real ruby class is used (e.g. if the scope is the
main object, then the top level Object
class is used as the scope).
If a module of the given name is already defined in the scope, then that instance is just returned.
If there is a class of the given name in the scope, then an error is generated instead (cannot have a class and module of same name in same scope).
Otherwise, a new module is created in the scope with the given name, and that new instance is returned back (to be referenced at runtime).
@param scope [Module, Class] class or module this definition is inside @param id [String] the name of the new (or existing) module
@return [Module]
Opal.allocate_module = function(name) {
var constructor = function(){};
if (name) {
$defineProperty(constructor, 'displayName', name+'.$$constructor');
}
var module = constructor;
if (name)
$defineProperty(constructor, 'displayName', name+'.constructor');
$defineProperty(module, '$$name', name);
$defineProperty(module, '$$prototype', constructor.prototype);
$defineProperty(module, '$$const', {});
$defineProperty(module, '$$is_module', true);
$defineProperty(module, '$$is_a_module', true);
$defineProperty(module, '$$cvars', {});
$defineProperty(module, '$$iclasses', []);
$defineProperty(module, '$$own_included_modules', []);
$defineProperty(module, '$$own_prepended_modules', []);
$defineProperty(module, '$$ancestors', [module]);
$defineProperty(module, '$$ancestors_cache_version', null);
$set_proto(module, Opal.Module.prototype);
return module;
};
scope = _Object
Global scope
scope = _Object;
scope = scope.$$class
Scope is an object, use its class
scope = scope.$$class;
module = Opal.allocate_module(name)
Module doesnt exist, create a new one...
module = Opal.allocate_module(name);
Opal.get_singleton_class = function(object)
Return the singleton class for the passed object.
If the given object alredy has a singleton class, then it will be stored on
the object as the $$meta
property. If this exists, then it is simply
returned back.
Otherwise, a new singleton object for the class or object is created, set on
the object at $$meta
for future use, and then returned.
@param object [Object] the ruby object @return [Class] the singleton class for object
Opal.get_singleton_class = function(object) {
if (object.$$meta) {
return object.$$meta;
}
if (object.hasOwnProperty('$$is_class')) {
return Opal.build_class_singleton_class(object);
} else if (object.hasOwnProperty('$$is_module')) {
return Opal.build_module_singleton_class(object);
} else {
return Opal.build_object_singleton_class(object);
}
};
Opal.build_class_singleton_class = function(klass)
Build the singleton class for an existing class. Class object are built
with their singleton class already in the prototype chain and inheriting
from their superclass object (up to Class
itself).
NOTE: Actually in MRI a class' singleton class inherits from its superclass' singleton class which in turn inherits from Class.
@param klass [Class] @return [Class]
Opal.build_class_singleton_class = function(klass) {
var superclass, meta;
if (klass.$$meta) {
return klass.$$meta;
}
// The singleton_class superclass is the singleton_class of its superclass;
// but BasicObject has no superclass (its `$$super` is null), thus we
// fallback on `Class`.
superclass = klass === BasicObject ? Class : Opal.get_singleton_class(klass.$$super);
meta = Opal.allocate_class(null, superclass, function(){});
$defineProperty(meta, '$$is_singleton', true);
$defineProperty(meta, '$$singleton_of', klass);
$defineProperty(klass, '$$meta', meta);
$set_proto(klass, meta.$$prototype);
// Restoring ClassName.class
$defineProperty(klass, '$$class', Opal.Class);
return meta;
};
$defineProperty(mod, '$$class', Opal.Module)
Restoring ModuleName.class
$defineProperty(mod, '$$class', Opal.Module);
Opal.build_object_singleton_class = function(object)
Build the singleton class for a Ruby (non class) Object.
@param object [Object] @return [Class]
Opal.build_object_singleton_class = function(object) {
var superclass = object.$$class,
klass = Opal.allocate_class(nil, superclass, function(){});
$defineProperty(klass, '$$is_singleton', true);
$defineProperty(klass, '$$singleton_of', object);
delete klass.$$prototype.$$class;
$defineProperty(object, '$$meta', klass);
$set_proto(object, object.$$meta.$$prototype);
return klass;
};
Opal.class_variables = function(module)
Returns an object containing all pairs of names/values for all class variables defined in provided +module+ and its ancestors.
@param module [Module] @return [Object]
Opal.class_variables = function(module) {
var ancestors = Opal.ancestors(module),
i, length = ancestors.length,
result = {};
for (i = length - 1; i >= 0; i--) {
var ancestor = ancestors[i];
for (var cvar in ancestor.$$cvars) {
result[cvar] = ancestor.$$cvars[cvar];
}
}
return result;
};
Opal.class_variable_set = function(module, name, value)
Sets class variable with specified +name+ to +value+ in provided +module+
@param module [Module] @param name [String] @param value [Object]
Opal.class_variable_set = function(module, name, value) {
var ancestors = Opal.ancestors(module),
i, length = ancestors.length;
for (i = length - 2; i >= 0; i--) {
var ancestor = ancestors[i];
if ($has_own.call(ancestor.$$cvars, name)) {
ancestor.$$cvars[name] = value;
return value;
}
}
module.$$cvars[name] = value;
return value;
};
Opal.class_variable_get = function(module, name, tolerant)
Gets class variable with specified +name+ from provided +module+
@param module [Module] @param name [String]
Opal.class_variable_get = function(module, name, tolerant) {
if ($has_own.call(module.$$cvars, name))
return module.$$cvars[name];
var ancestors = Opal.ancestors(module),
i, length = ancestors.length;
for (i = 0; i < length; i++) {
var ancestor = ancestors[i];
if ($has_own.call(ancestor.$$cvars, name)) {
return ancestor.$$cvars[name];
}
}
if (!tolerant)
throw Opal.NameError.$new('uninitialized class variable '+name+' in '+module.$name());
return nil;
}
break
superclass
break;
Opal.append_features = function(module, includer)
The actual inclusion of a module into a class.
Class $$parent
and iclass
To handle super
calls, every class has a $$parent
. This parent is
used to resolve the next class for a super call. A normal class would
have this point to its superclass. However, if a class includes a module
then this would need to take into account the module. The module would
also have to then point its $$parent
to the actual superclass. We
cannot modify modules like this, because it might be included in more
then one class. To fix this, we actually insert an iclass
as the class'
$$parent
which can then point to the superclass. The iclass
acts as
a proxy to the actual module, so the super
chain can then search it for
the required method.
@param module [Module] the module to include @param includer [Module] the target class to include module into @return [null]
Opal.append_features = function(module, includer) {
var module_ancestors = Opal.ancestors(module);
var iclasses = [];
if (module_ancestors.indexOf(includer) !== -1) {
throw Opal.ArgumentError.$new('cyclic include detected');
}
for (var i = 0, length = module_ancestors.length; i < length; i++) {
var ancestor = module_ancestors[i], iclass = create_iclass(ancestor);
$defineProperty(iclass, '$$included', true);
iclasses.push(iclass);
}
var includer_ancestors = Opal.ancestors(includer),
chain = chain_iclasses(iclasses),
start_chain_after,
end_chain_on;
if (includer_ancestors.indexOf(module) === -1) {
// first time include
// includer -> chain.first -> ...chain... -> chain.last -> includer.parent
start_chain_after = includer.$$prototype;
end_chain_on = Object.getPrototypeOf(includer.$$prototype);
} else {
// The module has been already included,
// we don't need to put it into the ancestors chain again,
// but this module may have new included modules.
// If it's true we need to copy them.
//
// The simplest way is to replace ancestors chain from
// parent
// |
// `module` iclass (has a $$root flag)
// |
// ...previos chain of module.included_modules ...
// |
// "next ancestor" (has a $$root flag or is a real class)
//
// to
// parent
// |
// `module` iclass (has a $$root flag)
// |
// ...regenerated chain of module.included_modules
// |
// "next ancestor" (has a $$root flag or is a real class)
//
// because there are no intermediate classes between `parent` and `next ancestor`.
// It doesn't break any prototypes of other objects as we don't change class references.
var parent = includer.$$prototype, module_iclass = Object.getPrototypeOf(parent);
while (module_iclass != null) {
if (module_iclass.$$module === module && isRoot(module_iclass)) {
break;
}
parent = module_iclass;
module_iclass = Object.getPrototypeOf(module_iclass);
}
if (module_iclass) {
// module has been directly included
var next_ancestor = Object.getPrototypeOf(module_iclass);
// skip non-root iclasses (that were recursively included)
while (next_ancestor.hasOwnProperty('$$iclass') && !isRoot(next_ancestor)) {
next_ancestor = Object.getPrototypeOf(next_ancestor);
}
start_chain_after = parent;
end_chain_on = next_ancestor;
} else {
// module has not been directly included but was in ancestor chain because it was included by another module
// include it directly
start_chain_after = includer.$$prototype;
end_chain_on = Object.getPrototypeOf(includer.$$prototype);
}
}
$set_proto(start_chain_after, chain.first);
$set_proto(chain.last, end_chain_on);
// recalculate own_included_modules cache
includer.$$own_included_modules = own_included_modules(includer);
Opal.const_cache_version++;
};
module_ancestors = Opal.ancestors(module)
Here we change the ancestors chain from
prepender | parent
to:
dummy(prepender) | iclass(module) | iclass(prepender) | parent
var module_ancestors = Opal.ancestors(module);
prepender_iclass = dummy_prepender.$$define_methods_on
The module already has some prepended modules which means that we don't need to make it "dummy"
prepender_iclass = dummy_prepender.$$define_methods_on;
prepender_iclass = create_dummy_iclass(prepender)
Making the module "dummy"
prepender_iclass = create_dummy_iclass(prepender);
$set_proto(dummy_prepender, prepender_iclass)
Converting dummy(prepender) -> previous_parent to dummy(prepender) -> iclass(prepender) -> previous_parent
$set_proto(dummy_prepender, prepender_iclass);
``
first time prepend
end_chain_on = Object.getPrototypeOf(dummy_prepender)
next $$root or prepender_iclass or non-$$iclass
end_chain_on = Object.getPrototypeOf(dummy_prepender);
prepender.$$own_prepended_modules = own_prepended_modules(prepender)
recalculate own_prepended_modules cache
prepender.$$own_prepended_modules = own_prepended_modules(prepender);
function create_dummy_iclass(module)
Dummy iclass doesn't receive updates when the module gets a new method.
function create_dummy_iclass(module) {
var iclass = {},
proto = module.$$prototype;
if (proto.hasOwnProperty('$$dummy')) {
proto = proto.$$define_methods_on;
}
var props = Object.getOwnPropertyNames(proto),
length = props.length, i;
for (i = 0; i < length; i++) {
var prop = props[i];
$defineProperty(iclass, prop, proto[prop]);
}
$defineProperty(iclass, '$$iclass', true);
$defineProperty(iclass, '$$module', module);
return iclass;
}
Opal.bridge = function(native_klass, klass)
For performance, some core Ruby classes are toll-free bridged to their native JavaScript counterparts (e.g. a Ruby Array is a JavaScript Array).
This method is used to setup a native constructor (e.g. Array), to have its prototype act like a normal Ruby class. Firstly, a new Ruby class is created using the native constructor so that its prototype is set as the target for the new class. Note: all bridged classes are set to inherit from Object.
Example:
Opal.bridge(self, Function);
@param klass [Class] the Ruby class to bridge @param constructor [JS.Function] native JavaScript constructor to use @return [Class] returns the passed Ruby class
Opal.bridge = function(native_klass, klass) {
if (native_klass.hasOwnProperty('$$bridge')) {
throw Opal.ArgumentError.$new("already bridged");
}
// constructor is a JS function with a prototype chain like:
// - constructor
// - super
//
// What we need to do is to inject our class (with its prototype chain)
// between constructor and super. For example, after injecting ::Object
// into JS String we get:
//
// - constructor (window.String)
// - Opal.Object
// - Opal.Kernel
// - Opal.BasicObject
// - super (window.Object)
// - null
//
$defineProperty(native_klass, '$$bridge', klass);
$set_proto(native_klass.prototype, (klass.$$super || Opal.Object).$$prototype);
$defineProperty(klass, '$$prototype', native_klass.prototype);
$defineProperty(klass.$$prototype, '$$class', klass);
$defineProperty(klass, '$$constructor', native_klass);
$defineProperty(klass, '$$bridge', true);
};
Opal.ancestors = function(module)
The Array of ancestors for a given module/class
Opal.ancestors = function(module) {
if (!module) { return []; }
if (module.$$ancestors_cache_version === Opal.const_cache_version) {
return module.$$ancestors;
}
var result = [], i, mods, length;
for (i = 0, mods = own_ancestors(module), length = mods.length; i < length; i++) {
result.push(mods[i]);
}
if (module.$$super) {
for (i = 0, mods = Opal.ancestors(module.$$super), length = mods.length; i < length; i++) {
result.push(mods[i]);
}
}
module.$$ancestors_cache_version = Opal.const_cache_version;
module.$$ancestors = result;
return result;
};
``
Method Missing
Opal.add_stubs = function(stubs)
Methods stubs are used to facilitate method_missing in opal. A stub is a
placeholder function which just calls method_missing
on the receiver.
If no method with the given name is actually defined on an object, then it
is obvious to say that the stub will be called instead, and then in turn
method_missing will be called.
When a file in ruby gets compiled to javascript, it includes a call to this function which adds stubs for every method name in the compiled file. It should then be safe to assume that method_missing will work for any method call detected.
Method stubs are added to the BasicObject prototype, which every other ruby object inherits, so all objects should handle method missing. A stub is only added if the given property name (method name) is not already defined.
Note: all ruby methods have a $
prefix in javascript, so all stubs will
have this prefix as well (to make this method more performant).
Opal.add_stubs(["$foo", "$bar", "$baz="]);
All stub functions will have a private $$stub
property set to true so
that other internal methods can detect if a method is just a stub or not.
Kernel#respond_to?
uses this property to detect a methods presence.
@param stubs [Array] an array of method stubs to add @return [undefined]
Opal.add_stubs = function(stubs) {
var proto = Opal.BasicObject.$$prototype;
var stub, existing_method;
for (var i = 0, length = stubs.length; i < length; i++) {
stub = stubs[i], existing_method = proto[stub];
if (existing_method == null || existing_method.$$stub) {
Opal.add_stub_for(proto, stub);
}
}
};
Opal.add_stub_for = function(prototype, stub)
Add a method_missing stub function to the given prototype for the given name.
@param prototype [Prototype] the target prototype @param stub [String] stub name to add (e.g. "$foo") @return [undefined]
Opal.add_stub_for = function(prototype, stub) {
// Opal.stub_for(stub) is the method_missing_stub
$defineProperty(prototype, stub, Opal.stub_for(stub));
};
Opal.stub_for = function(method_name)
Generate the method_missing stub for a given method name.
@param method_name [String] The js-name of the method to stub (e.g. "$foo") @return [undefined]
Opal.stub_for = function(method_name) {
function method_missing_stub() {
// Copy any given block onto the method_missing dispatcher
this.$method_missing.$$p = method_missing_stub.$$p;
// Set block property to null ready for the next call (stop false-positives)
method_missing_stub.$$p = null;
// call method missing with correct args (remove '$' prefix on method name)
var args_ary = new Array(arguments.length);
for(var i = 0, l = args_ary.length; i < l; i++) { args_ary[i] = arguments[i]; }
return this.$method_missing.apply(this, [method_name.slice(1)].concat(args_ary));
}
method_missing_stub.$$stub = true;
return method_missing_stub;
};
``
Methods
Opal.ac = function(actual, expected, object, meth)
Arity count error dispatcher for methods
@param actual [Fixnum] number of arguments given to method @param expected [Fixnum] expected number of arguments @param object [Object] owner of the method +meth+ @param meth [String] method name that got wrong number of arguments @raise [ArgumentError]
Opal.ac = function(actual, expected, object, meth) {
var inspect = '';
if (object.$$is_a_module) {
inspect += object.$$name + '.';
}
else {
inspect += object.$$class.$$name + '#';
}
inspect += meth;
throw Opal.ArgumentError.$new('[' + inspect + '] wrong number of arguments(' + actual + ' for ' + expected + ')');
};
Opal.block_ac = function(actual, expected, context)
Arity count error dispatcher for blocks
@param actual [Fixnum] number of arguments given to block @param expected [Fixnum] expected number of arguments @param context [Object] context of the block definition @raise [ArgumentError]
Opal.block_ac = function(actual, expected, context) {
var inspect = "`block in " + context + "'";
throw Opal.ArgumentError.$new(inspect + ': wrong number of arguments (' + actual + ' for ' + expected + ')');
};
Opal.find_super = function(obj, mid, current_func, defcheck, allow_stubs)
Super dispatcher
Opal.find_super = function(obj, mid, current_func, defcheck, allow_stubs) {
var jsid = '$' + mid, ancestors, super_method;
if (obj.hasOwnProperty('$$meta')) {
ancestors = Opal.ancestors(obj.$$meta);
} else {
ancestors = Opal.ancestors(obj.$$class);
}
var current_index = ancestors.indexOf(current_func.$$owner);
for (var i = current_index + 1; i < ancestors.length; i++) {
var ancestor = ancestors[i],
proto = ancestor.$$prototype;
if (proto.hasOwnProperty('$$dummy')) {
proto = proto.$$define_methods_on;
}
if (proto.hasOwnProperty(jsid)) {
super_method = proto[jsid];
break;
}
}
if (!defcheck && super_method && super_method.$$stub && obj.$method_missing.$$pristine) {
// method_missing hasn't been explicitly defined
throw Opal.NoMethodError.$new('super: no superclass method `'+mid+"' for "+obj, mid);
}
return (super_method.$$stub && !allow_stubs) ? null : super_method;
};
Opal.find_block_super = function(obj, jsid, current_func, defcheck, implicit)
Iter dispatcher for super in a block
Opal.find_block_super = function(obj, jsid, current_func, defcheck, implicit) {
var call_jsid = jsid;
if (!current_func) {
throw Opal.RuntimeError.$new("super called outside of method");
}
if (implicit && current_func.$$define_meth) {
throw Opal.RuntimeError.$new("implicit argument passing of super from method defined by define_method() is not supported. Specify all arguments explicitly");
}
if (current_func.$$def) {
call_jsid = current_func.$$jsid;
}
return Opal.find_super_dispatcher(obj, call_jsid, current_func, defcheck);
};
Opal.find_super_dispatcher = Opal.find_super
@deprecated
Opal.find_super_dispatcher = Opal.find_super;
Opal.find_iter_super_dispatcher = Opal.find_block_super
@deprecated
Opal.find_iter_super_dispatcher = Opal.find_block_super;
Opal.ret = function(val)
Used to return as an expression. Sometimes, we can't simply return from a javascript function as if we were a method, as the return is used as an expression, or even inside a block which must "return" to the outer method. This helper simply throws an error which is then caught by the method. This approach is expensive, so it is only used when absolutely needed.
Opal.ret = function(val) {
Opal.returner.$v = val;
throw Opal.returner;
};
Opal.brk = function(val, breaker)
Used to break out of a block.
Opal.brk = function(val, breaker) {
breaker.$v = val;
throw breaker;
};
Opal.new_brk = function()
Builds a new unique breaker, this is to avoid multiple nested breaks to get in the way of each other.
Opal.new_brk = function() {
return new Error('unexpected break');
};
Opal.yield1 = function(block, arg)
handles yield calls for 1 yielded arg
Opal.yield1 = function(block, arg) {
if (typeof(block) !== "function") {
throw Opal.LocalJumpError.$new("no block given");
}
var has_mlhs = block.$$has_top_level_mlhs_arg,
has_trailing_comma = block.$$has_trailing_comma_in_args;
if (block.length > 1 || ((has_mlhs || has_trailing_comma) && block.length === 1)) {
arg = Opal.to_ary(arg);
}
if ((block.length > 1 || (has_trailing_comma && block.length === 1)) && arg.$$is_array) {
return block.apply(null, arg);
}
else {
return block(arg);
}
};
Opal.yieldX = function(block, args)
handles yield for > 1 yielded arg
Opal.yieldX = function(block, args) {
if (typeof(block) !== "function") {
throw Opal.LocalJumpError.$new("no block given");
}
if (block.length > 1 && args.length === 1) {
if (args[0].$$is_array) {
return block.apply(null, args[0]);
}
}
if (!args.$$is_array) {
var args_ary = new Array(args.length);
for(var i = 0, l = args_ary.length; i < l; i++) { args_ary[i] = args[i]; }
return block.apply(null, args_ary);
}
return block.apply(null, args);
};
Opal.rescue = function(exception, candidates)
Finds the corresponding exception match in candidates. Each candidate can be a value, or an array of values. Returns null if not found.
Opal.rescue = function(exception, candidates) {
for (var i = 0; i < candidates.length; i++) {
var candidate = candidates[i];
if (candidate.$$is_array) {
var result = Opal.rescue(exception, candidate);
if (result) {
return result;
}
}
else if (candidate === Opal.JS.Error) {
return candidate;
}
else if (candidate['$==='](exception)) {
return candidate;
}
}
return null;
};
Opal.to_hash = function(value)
Helpers for extracting kwsplats Used for: { **h }
Opal.to_hash = function(value) {
if (value.$$is_hash) {
return value;
}
else if (value['$respond_to?']('to_hash', true)) {
var hash = value.$to_hash();
if (hash.$$is_hash) {
return hash;
}
else {
throw Opal.TypeError.$new("Can't convert " + value.$$class +
" to Hash (" + value.$$class + "#to_hash gives " + hash.$$class + ")");
}
}
else {
throw Opal.TypeError.$new("no implicit conversion of " + value.$$class + " into Hash");
}
};
``
Helpers for implementing multiple assignment Our code for extracting the values and assigning them only works if the return value is a JS array. So if we get an Array subclass, extract the wrapped JS array from it
Opal.to_ary = function(value)
Used for: a, b = something (no splat)
Opal.to_ary = function(value) {
if (value.$$is_array) {
return value;
}
else if (value['$respond_to?']('to_ary', true)) {
var ary = value.$to_ary();
if (ary === nil) {
return [value];
}
else if (ary.$$is_array) {
return ary;
}
else {
throw Opal.TypeError.$new("Can't convert " + value.$$class +
" to Array (" + value.$$class + "#to_ary gives " + ary.$$class + ")");
}
}
else {
return [value];
}
};
Opal.to_a = function(value)
Used for: a, b = *something (with splat)
Opal.to_a = function(value) {
if (value.$$is_array) {
// A splatted array must be copied
return value.slice();
}
else if (value['$respond_to?']('to_a', true)) {
var ary = value.$to_a();
if (ary === nil) {
return [value];
}
else if (ary.$$is_array) {
return ary;
}
else {
throw Opal.TypeError.$new("Can't convert " + value.$$class +
" to Array (" + value.$$class + "#to_a gives " + ary.$$class + ")");
}
}
else {
return [value];
}
};
Opal.extract_kwargs = function(parameters)
Used for extracting keyword arguments from arguments passed to JS function. If provided +arguments+ list doesn't have a Hash as a last item, returns a blank Hash.
@param parameters [Array] @return [Hash]
Opal.extract_kwargs = function(parameters) {
var kwargs = parameters[parameters.length - 1];
if (kwargs != null && Opal.respond_to(kwargs, '$to_hash', true)) {
$splice.call(parameters, parameters.length - 1, 1);
return kwargs.$to_hash();
}
else {
return Opal.hash2([], {});
}
};
Opal.kwrestargs = function(given_args, used_args)
Used to get a list of rest keyword arguments. Method takes the given keyword args, i.e. the hash literal passed to the method containing all keyword arguemnts passed to method, as well as the used args which are the names of required and optional arguments defined. This method then just returns all key/value pairs which have not been used, in a new hash literal.
@param given_args [Hash] all kwargs given to method
@param used_args [Object
Opal.kwrestargs = function(given_args, used_args) {
var keys = [],
map = {},
key ,
given_map = given_args.$$smap;
for (key in given_map) {
if (!used_args[key]) {
keys.push(key);
map[key] = given_map[key];
}
}
return Opal.hash2(keys, map);
};
Opal.send = function(recv, method, args, block)
Calls passed method on a ruby object with arguments and block:
Can take a method or a method name.
- When method name gets passed it invokes it by its name and calls 'method_missing' when object doesn't have this method. Used internally by Opal to invoke method that takes a block or a splat.
- When method (i.e. method body) gets passed, it doesn't trigger 'method_missing' because it doesn't know the name of the actual method. Used internally by Opal to invoke 'super'.
@example var my_array = [1, 2, 3, 4] Opal.send(my_array, 'length') # => 4 Opal.send(my_array, my_array.$length) # => 4
Opal.send(my_array, 'reverse!') # => [4, 3, 2, 1] Opal.send(my_array, my_array['$reverse!']') # => [4, 3, 2, 1]
@param recv [Object] ruby object @param method [Function, String] method body or name of the method @param args [Array] arguments that will be passed to the method call @param block [Function] ruby block @return [Object] returning value of the method call
Opal.send = function(recv, method, args, block) {
var body;
if (typeof(method) === 'function') {
body = method;
method = null;
} else if (typeof(method) === 'string') {
body = recv['$'+method];
} else {
throw Opal.NameError.$new("Passed method should be a string or a function");
}
return Opal.send2(recv, body, method, args, block);
};
for (i = 0; i < ancestors.length; i++)
For all ancestors that there are, starting from the closest to the furthest...
for (i = 0; i < ancestors.length; i++) {
for (j = 0; j < refinement_groups.length; j++)
For all refinement groups there are, starting from the closest scope to the furthest...
for (j = 0; j < refinement_groups.length; j++) {
for (k = refinements.length - 1; k >= 0; k--)
For all refinements there are, starting from the last using
call to the furthest...
for (k = refinements.length - 1; k >= 0; k--) {
refine_modules = refinement.$$refine_modules
A single module being given as an argument of the using
call contains multiple
refinement modules
refine_modules = refinement.$$refine_modules;
if (typeof refine_modules[ancestor] !== 'undefined')
Does this module refine a given call for a given ancestor module?
if (typeof refine_modules[ancestor] !== 'undefined') {
if (typeof refine_module.$$prototype['$'+method] !== 'undefined')
Does this module define a method we want to call?
if (typeof refine_module.$$prototype['$'+method] !== 'undefined') {
Opal.def = function(obj, jsid, body)
Used to define methods on an object. This is a helper method, used by the
compiled source to define methods on special case objects when the compiler
can not determine the destination object, or the object is a Module
instance. This can get called by Module#define_method
as well.
Modules
Any method defined on a module will come through this runtime helper.
The method is added to the module body, and the owner of the method is
set to be the module itself. This is used later when choosing which
method should show on a class if more than 1 included modules define
the same method. Finally, if the module is in module_function
mode,
then the method is also defined onto the module itself.
Classes
This helper will only be called for classes when a method is being
defined indirectly; either through Module#define_method
, or by a
literal def
method inside an instance_eval
or class_eval
body. In
either case, the method is simply added to the class' prototype. A special
exception exists for BasicObject
and Object
. These two classes are
special because they are used in toll-free bridged classes. In each of
these two cases, extra work is required to define the methods on toll-free
bridged class' prototypes as well.
Objects
If a simple ruby object is the object, then the method is simply just
defined on the object as a singleton method. This would be the case when
a method is defined inside an instance_eval
block.
@param obj [Object, Class] the actual obj to define method for @param jsid [String] the JavaScript friendly method name (e.g. '$foo') @param body [JS.Function] the literal JavaScript function used as method @return [null]
Opal.def = function(obj, jsid, body) {
// Special case for a method definition in the
// top-level namespace
if (obj === Opal.top) {
Opal.defn(Opal.Object, jsid, body)
}
// if instance_eval is invoked on a module/class, it sets inst_eval_mod
else if (!obj.$$eval && obj.$$is_a_module) {
Opal.defn(obj, jsid, body);
}
else {
Opal.defs(obj, jsid, body);
}
};
Opal.defn = function(module, jsid, body)
Define method on a module or class (see Opal.def).
Opal.defn = function(module, jsid, body) {
body.displayName = jsid;
body.$$owner = module;
var proto = module.$$prototype;
if (proto.hasOwnProperty('$$dummy')) {
proto = proto.$$define_methods_on;
}
$defineProperty(proto, jsid, body);
if (module.$$is_module) {
if (module.$$module_function) {
Opal.defs(module, jsid, body)
}
for (var i = 0, iclasses = module.$$iclasses, length = iclasses.length; i < length; i++) {
var iclass = iclasses[i];
$defineProperty(iclass, jsid, body);
}
}
var singleton_of = module.$$singleton_of;
if (module.$method_added && !module.$method_added.$$stub && !singleton_of) {
module.$method_added(jsid.substr(1));
}
else if (singleton_of && singleton_of.$singleton_method_added && !singleton_of.$singleton_method_added.$$stub) {
singleton_of.$singleton_method_added(jsid.substr(1));
}
};
Opal.defs = function(obj, jsid, body)
Define a singleton method on the given object (see Opal.def).
Opal.defs = function(obj, jsid, body) {
if (obj.$$is_string || obj.$$is_number) {
throw Opal.TypeError.$new("can't define singleton");
}
Opal.defn(Opal.get_singleton_class(obj), jsid, body)
};
Opal.rdef = function(obj, jsid)
Called from #remove_method.
Opal.rdef = function(obj, jsid) {
if (!$has_own.call(obj.$$prototype, jsid)) {
throw Opal.NameError.$new("method '" + jsid.substr(1) + "' not defined in " + obj.$name());
}
delete obj.$$prototype[jsid];
if (obj.$$is_singleton) {
if (obj.$$prototype.$singleton_method_removed && !obj.$$prototype.$singleton_method_removed.$$stub) {
obj.$$prototype.$singleton_method_removed(jsid.substr(1));
}
}
else {
if (obj.$method_removed && !obj.$method_removed.$$stub) {
obj.$method_removed(jsid.substr(1));
}
}
};
Opal.udef = function(obj, jsid)
Called from #undef_method.
Opal.udef = function(obj, jsid) {
if (!obj.$$prototype[jsid] || obj.$$prototype[jsid].$$stub) {
throw Opal.NameError.$new("method '" + jsid.substr(1) + "' not defined in " + obj.$name());
}
Opal.add_stub_for(obj.$$prototype, jsid);
if (obj.$$is_singleton) {
if (obj.$$prototype.$singleton_method_undefined && !obj.$$prototype.$singleton_method_undefined.$$stub) {
obj.$$prototype.$singleton_method_undefined(jsid.substr(1));
}
}
else {
if (obj.$method_undefined && !obj.$method_undefined.$$stub) {
obj.$method_undefined(jsid.substr(1));
}
}
};
if (typeof obj.$$prototype === 'undefined')
Aliasing on main means aliasing on Object...
if (typeof obj.$$prototype === 'undefined') {
if (obj.$$eval)
When running inside #instance_eval the alias refers to class methods.
if (obj.$$eval) {
body = Opal.Object.$$prototype[old_id]
try to look into Object
body = Opal.Object.$$prototype[old_id]
if (body.$$alias_of) body = body.$$alias_of
If the body is itself an alias use the original body to keep the max depth at 1.
if (body.$$alias_of) body = body.$$alias_of;
alias = function()
We need a wrapper because otherwise properties would be overwritten on the original body.
alias = function() {
var block = alias.$$p, args, i, ii;
args = new Array(arguments.length);
for(i = 0, ii = arguments.length; i < ii; i++) {
args[i] = arguments[i];
}
if (block != null) { alias.$$p = null }
return Opal.send(this, body, args, block);
};
try
Assign the 'length' value with defineProperty because in strict mode the property is not writable. It doesn't work in older browsers (like Chrome 38), where an exception is thrown breaking Opal altogether.
try {
alias.displayName = name
Try to make the browser pick the right name
alias.displayName = name;
``
Hashes
Opal.hash2 = function(keys, smap)
A faster Hash creator for hashes that just use symbols and strings as keys. The map and keys array can be constructed at compile time, so they are just added here by the constructor function.
Opal.hash2 = function(keys, smap) {
var hash = new Opal.Hash();
hash.$$smap = smap;
hash.$$map = Object.create(null);
hash.$$keys = keys;
return hash;
};
Opal.range = function(first, last, exc)
Create a new range instance with first and last values, and whether the range excludes the last value.
Opal.range = function(first, last, exc) {
var range = new Opal.Range();
range.begin = first;
range.end = last;
range.excl = exc;
return range;
};
Opal.ivar = function(name)
Get the ivar name for a given name. Mostly adds a trailing $ to reserved names.
Opal.ivar = function(name) {
if (
// properties
name === "constructor" ||
name === "displayName" ||
name === "__count__" ||
name === "__noSuchMethod__" ||
name === "__parent__" ||
name === "__proto__" ||
// methods
name === "hasOwnProperty" ||
name === "valueOf"
)
{
return name + "$";
}
return name;
};
``
Regexps
Opal.escape_regexp = function(str)
Escape Regexp special chars letting the resulting string be used to build a new Regexp.
Opal.escape_regexp = function(str) {
return str.replace(/([-[\]\/{}()*+?.^$\\| ])/g, '\\$1')
.replace(/[\n]/g, '\\n')
.replace(/[\r]/g, '\\r')
.replace(/[\f]/g, '\\f')
.replace(/[\t]/g, '\\t');
};
Opal.global_regexp = function(pattern)
Create a global Regexp from a RegExp object and cache the result on the object itself ($$g attribute).
Opal.global_regexp = function(pattern) {
if (pattern.global) {
return pattern; // RegExp already has the global flag
}
if (pattern.$$g == null) {
pattern.$$g = new RegExp(pattern.source, (pattern.multiline ? 'gm' : 'g') + (pattern.ignoreCase ? 'i' : ''));
} else {
pattern.$$g.lastIndex = null; // reset lastIndex property
}
return pattern.$$g;
};
Opal.global_multiline_regexp = function(pattern)
Create a global multiline Regexp from a RegExp object and cache the result on the object itself ($$gm or $$g attribute).
Opal.global_multiline_regexp = function(pattern) {
var result;
if (pattern.multiline) {
if (pattern.global) {
return pattern; // RegExp already has the global and multiline flag
}
// we are using the $$g attribute because the Regexp is already multiline
if (pattern.$$g != null) {
result = pattern.$$g;
} else {
result = pattern.$$g = new RegExp(pattern.source, 'gm' + (pattern.ignoreCase ? 'i' : ''));
}
} else if (pattern.$$gm != null) {
result = pattern.$$gm;
} else {
result = pattern.$$gm = new RegExp(pattern.source, 'gm' + (pattern.ignoreCase ? 'i' : ''));
}
result.lastIndex = null; // reset lastIndex property
return result;
};
Opal.regexp = function(parts, flags)
Combine multiple regexp parts together
Opal.regexp = function(parts, flags) {
var part;
var ignoreCase = typeof flags !== 'undefined' && flags && flags.indexOf('i') >= 0;
for (var i = 0, ii = parts.length; i < ii; i++) {
part = parts[i];
if (part instanceof RegExp) {
if (part.ignoreCase !== ignoreCase)
Opal.Kernel.$warn(
"ignore case doesn't match for " + part.source.$inspect(),
Opal.hash({uplevel: 1})
)
part = part.source;
}
if (part === '') part = '(?:' + part + ')';
parts[i] = part;
}
if (flags) {
return new RegExp(parts.join(''), flags);
} else {
return new RegExp(parts.join(''));
}
};
``
Require system
return retval.then(function() { return true; })
A special case of require having an async top: We will need to await it.
return retval.then(function() { return true; });
``
Strings
Opal.set_encoding = function(str, name, type)
Sets the encoding on a string, will treat string literals as frozen strings raising a FrozenError.
@param str [String] the string on which the encoding should be set
@param name [String] the canonical name of the encoding
@param type [String] possible values are either "encoding"
, "internal_encoding"
, or `undefined
Opal.set_encoding = function(str, name, type) {
if (typeof type === "undefined") type = "encoding";
if (typeof str === 'string' || str.$$frozen === true)
throw Opal.FrozenError.$new("can't modify frozen String");
var encoding = Opal.find_encoding(name);
if (encoding === str[type]) { return str; }
str[type] = encoding;
return str;
};
Opal.find_encoding = function(name)
Fetches the encoding for the given name or raises ArgumentError.
Opal.find_encoding = function(name) {
var register = Opal.encodings;
var encoding = register[name] || register[name.toUpperCase()];
if (!encoding) throw Opal.ArgumentError.$new("unknown encoding name - " + name);
return encoding;
}
Opal.enc = function(str, name)
@returns a String object with the encoding set from a string literal
Opal.enc = function(str, name) {
var dup = new String(str);
dup = Opal.set_encoding(dup, name);
dup.internal_encoding = dup.encoding;
return dup
}
Opal.binary = function(str)
@returns a String object with the internal encoding set to Binary
Opal.binary = function(str) {
var dup = new String(str);
return Opal.set_encoding(dup, "binary", "internal_encoding");
}
Opal.queue = function(proc)
Run a block of code, but if it returns a Promise, don't run the next one, but queue it.
Opal.queue = function(proc) {
if (Opal.last_promise) {
// The async path is taken only if anything before returned a
// Promise(V2).
Opal.last_promise = Opal.last_promise.then(function() {
if (!Opal.promise_unhandled_exception) return proc(Opal);
})['catch'](function(error) {
if (Opal.respond_to(error, '$full_message')) {
error = error.$full_message();
}
console.error(error);
// Abort further execution
Opal.promise_unhandled_exception = true;
Opal.exit(1);
});
return Opal.last_promise;
}
else {
var ret = proc(Opal);
if (typeof Promise === 'function' && typeof ret === 'object' && ret instanceof Promise) {
Opal.last_promise = ret;
}
return ret;
}
}
function $BasicObject() {}
Initialization
function $BasicObject() {}
BasicObject.$$const["BasicObject"] = BasicObject
BasicObject can reach itself, avoid const_set to skip the $$base_module logic
BasicObject.$$const["BasicObject"] = BasicObject;
Opal.const_set(_Object, "BasicObject", BasicObject)
Assign basic constants
Opal.const_set(_Object, "BasicObject", BasicObject);
BasicObject.$$class = Class
Fix booted classes to have correct .class value
BasicObject.$$class = Class;
$defineProperty(_Object.$$prototype, 'toString', function()
Forward .toString() to #to_s
$defineProperty(_Object.$$prototype, 'toString', function() {
var to_s = this.$to_s();
if (to_s.$$is_string && typeof(to_s) === 'object') {
// a string created using new String('string')
return to_s.valueOf();
} else {
return to_s;
}
});
$defineProperty(_Object.$$prototype, '$require', Opal.require)
Make Kernel#require immediately available as it's needed to require all the other corelib files.
$defineProperty(_Object.$$prototype, '$require', Opal.require);
Opal.top = new _Object()
Instantiate the main object
Opal.top = new _Object();
function top_define_method()
Foward calls to define_method on the top object to Object
function top_define_method() {
var args = Opal.slice.call(arguments, 0, arguments.length);
var block = top_define_method.$$p;
top_define_method.$$p = null;
return Opal.send(_Object, 'define_method', args, block)
};
function $NilClass() {}
Nil
function $NilClass() {}
Opal.breaker = new Error('unexpected break (old)')
Errors
Opal.breaker = new Error('unexpected break (old)');